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1 Motivation
In recent years, the interest and involvement of retail traders in global
markets has surged, including the use of more complex instruments such
as options and futures. For the most part, many brokerages have em-
braced this secular trend by offering their customers a way to stream real-
time data directly on their personal computers. However, the standard
interface between each brokerage varies widely, and retail traders are
left with challenging documentation and inconsistent APIs to work with.
We attempt to alleviate this problem by introducing a zero-dependency,
browser-only TypeScript library that can compute a variety of both static
and real-time options pricing and flow data, including dealer gamma,
vanna, and charm exposures from streaming broker data.

2 Introducing floe

We introduce floe: a zero-dependency, browser-only TypeScript library
for computing real-time options flow data, including dealer gamma, vanna,
and charm exposures that can be derived purely from real-time streamed
broker data alone.

The mathematical foundation of floe rests upon the seminal work of
Black and Scholes [1] and Merton [2], whose option pricing framework
enables the computation of the Greeks used throughout this paper.

3 Paper Structure
The remainder of this paper is divided into two broad sections: the
first and main focus of this paper, Section 4 describes our process of
calculating in real-time both a smoothed implied volatility surface, the
live open interest, and the dealer exposures derived from it. All following
sections detail the variety of other options related pricing and analytics
that floe can compute.

4 Real-time Dealer Exposure Calculations
The real-time dealer exposure calculation consists of two phases: an ini-
tialization phase that captures open interest at market open (t = 0), and
a continuous update phase that recalculates exposures as new spot prices
and option quotes arrive. These calculations can be done over a unified
interface regardless of the given broker or data source.
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4.1 Initialization Phase: Capturing Open Interest
At or before market open, we fetch the complete option chain O for the
underlying symbol. Each option o ∈ O contains:

o = ⟨K,T, ϕ, bid, ask,OI0⟩

Where:

• K = strike price

• T = expiration timestamp (milliseconds)

• ϕ ∈ {call, put} = option type

• bid, ask = current bid/ask prices

• OI0 = open interest at t = 0

The market context includes the current spot price S0, risk-free rate r,
and dividend yield q.

4.2 Implied Volatility Surface Construction
Before calculating the actual dealer exposures, we first need to construct
a smooth implied volatility (IV) surface for each expiration T . These per-
strike IVs later have a direct affect on the vanna exposure calculation,
but also through the gamma and charm calculations themselves via the
greeks formulas.

For each option with observed market price Pmkt, we solve for σIV:

BS(S,K, τ, σIV, r, q, ϕ) = Pmkt (1)

Using bisection search with bounds σ ∈ [0.0001, 5.0] (0.01% to 500%
volatility).

4.3 Total Variance Smoothing
To ensure arbitrage-free and smooth IV surfaces, we apply total variance
smoothing:

1. Convert IV to total variance: w(K) = σ2τ

2. Apply cubic spline interpolation to w(K)

3. Enforce convexity via convex hull projection
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4. Convert back to IV: σsmooth(K) =
√
w(K)/τ

The convexity constraint ensures no calendar spread arbitrage exists in
the surface.

4.4 Dealer Position Assumption
We assume dealers are net short options (standard market-maker hedging
assumption):

• Short calls: Dealers sold calls to retail buyers

• Long puts: Dealers bought puts from retail sellers (equivalently,
short put exposure is negative)

4.5 Calculate Greeks for Each Option
For each option o with strike K, expiration T , and smoothed IV σIV(K),
we compute the following Greeks using the Black-Scholes-Merton formu-
las (see Section 5).

We now have all necessary components to compute dealer exposures.

4.6 Exposure Formulas
For each strike K with call open interest OIC and put open interest OIP :

Gamma Exposure (GEX):

GEXK = (−OIC · ΓC + OIP · ΓP ) · (S · 100) · S · 0.01 (2)

Because the share multiplier and 1% move resolve to unity, this simplifies
to:

GEXK = (−OIC · ΓC + OIP · ΓP ) · S2 (3)

Where ΓC and ΓP are the gamma of the call and put contracts at that
expiration and strike, respectively.

Vanna Exposure (VEX):

VEXK = (−OIC ·VannaC + OIP ·VannaP ) · (S · 100) · σIV · 0.01 (4)

Reducing constants:

VEXK = (−OIC ·VannaC + OIP ·VannaP ) · S · σIV (5)
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Where VannaC and VannaP are the vanna of the call and put contracts at
that expiration and strike, respectively, and σIV is the smoothed implied
volatility at that strike.

Charm Exposure (CEX):

CEXK = (−OIC · CharmC + OIP · CharmP ) · (S · 100) · 365τ (6)

The factor of 100 accounts for contract multiplier. The 0.01 factor nor-
malizes to a 1% move.

4.7 Total Exposures
Sum across all strikes for each expiration:

GEXtotal =
∑
K

GEXK (7)

VEXtotal =
∑
K

VEXK (8)

CEXtotal =
∑
K

CEXK (9)

Net Exposure = NEXtotal = GEXtotal + VEXtotal + CEXtotal (10)

4.8 Real-Time Update Process
The system subscribes to streaming quote data from brokers. On each
update event:

Algorithm 1 Real-Time Exposure Update
1: Input: New quote event (spot price S′ or option quote)
2: Update spot price S ← S′

3: Recalculate IV surface Σ for expiration T if option quote received
4: Update live open interest if trade data available
5: for each expiration T do
6: for each strike K do
7: σ ← getIVForStrike(Σ, T,K)
8: τ ← (T − now)/MS_PER_YEAR
9: Compute Γ,Vanna,Charm using updated S, σ, τ

10: Compute GEXK ,VEXK ,CEXK

11: end for
12: Aggregate total exposures for expiration T
13: end for
14: Output: Updated exposure metrics
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4.9 Live Open Interest Tracking
When intraday trade data is available, we estimate live open interest:

OIlive(t) = OI0 +
n∑

i=1

δi (11)

Where δi represents the estimated OI change from trade i, inferred by
comparing trade price to NBBO:

• Trade at ask ⇒ buyer-initiated ⇒ potential OI increase

• Trade at bid ⇒ seller-initiated ⇒ potential OI decrease or close

4.10 Minimum Broker Requirements
Note for this process to function effectively, brokers must provide a min-
imum:

• Real-time streaming quotes for underlying and options

• Open interest data before or at market open

• Trade prints with timestamps to estimate live OI changes

floe itself could potentially be used to do the rest of all calculations:
IV surface construction, Greeks calculation, exposure aggregation, and
real-time updates.

5 Black-Scholes Greeks Calculation
For any option, one can compute Greeks with floe using the Black-
Scholes-Merton model with continuous dividend yield [1, 2].

5.1 Core Parameters
Given spot S, strike K, time to expiry τ (in years), volatility σ, risk-free
rate r, and dividend yield q:

d1 =
ln(S/K) + (r − q + σ2/2)τ

σ
√
τ

(12)

d2 = d1 − σ
√
τ (13)
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5.2 First-Order Greeks
For a call option:

∆C = e−qτN(d1) (14)

Γ =
e−qτn(d1)

Sσ
√
τ

(15)

ΘC = −Sσe−qτn(d1)

2
√
τ

− rKe−rτN(d2) + qSe−qτN(d1) (16)

V = Se−qτ√τ · n(d1) (17)

For a put option:

∆P = −e−qτN(−d1) (18)

ΘP = −Sσe−qτn(d1)

2
√
τ

+ rKe−rτN(−d2)− qSe−qτN(−d1) (19)

Where N(·) is the cumulative normal distribution and n(·) is the standard
normal PDF:

n(x) =
1√
2π

e−x2/2 (20)

N(x) ≈ 1− n(x) · t · (a1 + t(a2 + t(a3 + t(a4 + t · a5)))) for x > 0
(21)

using the Abramowitz-Stegun approximation [4] with t = 1/(1+0.2316419|x|).

5.3 Second-Order Greeks

Vanna = −e−qτn(d1)
d2
σ

(22)

CharmC = −qe−qτN(d1)−
e−qτn(d1) (2(r − q)τ − d2σ

√
τ)

2τσ
√
τ

(23)

(24)

6 Implied Probability Distribution
floe provides functionality to extract the risk-neutral probability dis-
tribution implied by option prices, following the Breeden-Litzenberger
approach [3].
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6.1 Theoretical Foundation
Breeden and Litzenberger demonstrated that the risk-neutral probabil-
ity density function f(K) of the underlying asset at expiration can be
recovered from the second derivative of call option prices with respect to
strike:

f(K) = erτ
∂2C

∂K2
(25)

where C(K) is the call option price as a function of strike K, r is the
risk-free rate, and τ is time to expiration.

6.2 Numerical Implementation
In practice, we estimate the second derivative using central finite differ-
ences on the mid-prices of observed call options:

∂2C

∂K2

∣∣∣∣
Ki

≈ Ci+1 − 2Ci + Ci−1

(∆K)2
(26)

where Ci is the mid-price at strike Ki and ∆K = Ki+1 −Ki−1.

The resulting density values are normalized to sum to unity, yielding a
proper probability distribution. From this distribution, we compute sum-
mary statistics including the mode (most likely price), median, expected
value, and expected move (standard deviation).

7 Shares Needed to Cover
As a sort of global heuristic across all exposures at all strikes for a given
expiration, one can estimate the total hedging flow required to neutralize
dealer exposure:

Shares to Cover = −Net Exposure
S

(27)

Implied Move =
Shares to Cover

Shares Outstanding × 100% (28)

The sign indicates directional pressure:

• Negative net exposure⇒ dealers must buy⇒ upward price pressure

9



• Positive net exposure ⇒ dealers must sell ⇒ downward price pres-
sure

This method assumes equal weighting of exposure across all strikes, and
that the hedge will be perfectly (and exclusively) executed by buying or
selling shares of the underlying.

8 Future Work
• Explore concepts of instantaneous local hedge pressure by net ex-

posure at nearest price and how price velocity impacts immediate
dealer hedging needs.

• Improve nuances of live open interest estimation by weighing the
confidence of each change in OI by how far the trade price is from
the mid. Trades clearly at the bid or ask have higher signal; trades
near mid price are ambiguous as to aggressor side.

9 Summary
The complete pipeline for real-time dealer exposure calculation:

1. Initialize: Fetch option chain with OI0 at market open

2. Build IV Surface: Calculate IV for each option, apply total vari-
ance smoothing

3. Compute Greeks: For each option using smoothed IV and cur-
rent spot

4. Aggregate Exposures: Calculate GEX, VEX, CEX, and sum
them for NEX across strikes per expiration

5. Stream Updates: On each new quote, recalculate IV → Greeks
→ Exposures

6. Track Live OI: Adjust open interest based on observed trades

This methodology enables sub-second exposure updates, providing ac-
tionable insight into market-maker hedging dynamics as market condi-
tions evolve.
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A Repository
For the full source, examples, and license, see the project repository:
https://github.com/FullStackCraft/floe.
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